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Abstract

In this article we define the basic requirements for rf waveform optimization based on the general theory of charged particle
trapping for quadrupole mass spectrometers. To satisfy these requirements we introduce and describe a new type of a signal
called the EC signal. Also discussed are the features of harmonic and rectangular EC signals. (Int J Mass Spectrom 198 (2000)
83–96) © 2000 Elsevier Science B.V.
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1. Introduction

From the early days of quadrupole mass spectrom-
eter (QMS) development it has been clear that the
performance of this instrument could be dramatically
improved by the appropriate rf waveform selection.
Initially, researchers concentrated their efforts on
applying rf voltage with a simple rectangular wave-
form to quadrupole mass filters and ion traps [1,2].
Interest in this trend has been fueled by opportunities
for substantial modification of the general stability
zone configuration and structure, which would yield
important improvements in the performance of mass
spectrometers. For example, it has been shown in [3]
that sensitivity of the ion trap can be increased by a
factor of 4–5 by changing the pulse period-to-pulse

duration ratio up to 5. One of the practical realizations
of this idea was the three-dimensional ion trap driven
by a pulse rf voltage that was developed for theVEGA

space program (Venus and Haley’s Comet exploration
program) [4]. As indicated by the work of Kiai et al.
[5, 6], parameters of the ion trap can be improved by
modifying a waveform of the rf voltage. Moreover,
the use of advanced digital technology and modern
computer capabilities allows for dynamic generation
of an arbitrary rf waveform during mass scanning.

However, the full potential of this technique has
yet to be realized, because so far, no general approach
toward the rf waveform optimization problem has
been developed. This was due to lack of a general
theory of charged particle trapping for the fields, in
which the ion motion is described by the Hill equa-
tion. Only with the development of such theory will
there be an opportunity for optimization of rf voltage
applied to electrodes of QMS. The base trappingE-mail: sheretov@eac.ryazan.su
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theory of “stable” and “unstable” particles for partic-
ular cases of the Hill equation [sinewave (the Mathieu
equation) and rectangular rf waveform] was described
in [7–12] for a sinewave rf waveform, and, for
instance, in [13] for a rectangular rf waveform.

In the first part of this work an attempt is made to
develop general principles of the trapping theory for
QMS without committing to a particular rf waveform.
From this theory we obtain a general equation that
determines the maximal amplitude of ion oscillation
within such devices. By using the Hill equation
properties we obtain the equations that determine the
size of the trapping area along coordinate axes (in the
coordinate space) in the general form. The dimensions
of the trapping area were considered parameters for
determining the sensitivity of an instrument. This
allowed us to define optimization criteria for the shape
of the rf potential applied to QMS electrodes. Based
of the obtained requirements for rf waveforms we
introduce a new rf waveform that we call the EC
signal. The features of the two EC signal types
(harmonic and rectangular) are later discussed.

2. Amplitude of charged particle oscillations

In order to develop the general theory of ion
trapping in the case when we omit the practical effects
of the ion–neutral and ion–ion collisions, driving
voltage instability, and nonlinear fields in the QMS,
we can use the Hill equation.

Let us consider the Hill equation that describes ion
trajectories within the QMS (linear mode) in the
following form:

ÿ~t! 1 c~t! y~t! 5 0 (1)

wherec(t) is a periodic function of periodT0. The
solution of Eq. (1) can be written in the form [14]

y~t! 5 y0Y1~t0, t! 1 ẏ0Y2~t0, t! (2)

where

Y1~t0, t! 5
1

g0
@ ẏ2~t0! y1~t! 2 ẏ1~t0! y2~t!# (3)

Y2~t0, t! 5
1

g0
@ y1~t0! y2~t! 2 y2~t0! y1~t!# (4)

where g0 is the Wronskian determinant;y1(t) and
y2(t) are two particular independent solutions of Eq.
(1); t0 is the initial phase; andy0, ẏ0 are the initial
coordinate and velocity (fort 5 t0).

Particular independent solutions satisfy the trans-
formation equation

Uy1~t 1 T0!

y2~t 1 T0!
U 5 Ua1a2

b1b2

U 3 Uy1~t!

y2~t!
U (5)

where a1 and a2, b1 and b2 are elements of the
transformation matrix of partial solutions [14].

The general solutions of Eq. (1) fulfill to the
following recursion [14]:

y~t 1 T0! 1 y~t 2 T0! 5 2by~t! (6)

whereb is the stability parameter of Eq. (1); 2b 5

a1 1 b2.
First introduced in [1], the characteristic solution

of Eq. (1) satisfies Eq. (6) for any values of coeffi-
cientsA0 andB0:

ycharacter~n! 5 A0 cosnnT0 1 B0 sin nnT0 (7)

where cosnT0 5 b, and n is the time of flight in
periods ofT0.

If we find the respective values of coefficientsA0

and B0 from Eqs. (2) and (7), the characteristic
solution (7) matches the general solution (2) for the
points with period ofT0. These values ofA0 andB0

can be found by matching Eqs. (2) and (7) for an
arbitrary time pointts (ts is the moment when the
characteristic solution matches the general solution).
Then we have

A0 5 y0Y1~t0, ts! 1 ẏ0Y2~t0, ts!
(8)

B0

5
1

~1 2 b2!1/2 H y0@Y1~t0, ts 1 T0! 2 Y1~t0, ts!b#

1 ẏ0@Y2~t0, ts 1 T0! 2 Y2~t0, ts!b#
J

For the amplitude of the characteristic solution we
can obtain:
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Ym
2 5 A0

2 1 B0
2 (9)

Substitution of Eq. (8) into Eq. (9) yields

~1 2 b2!Ym
2 5 a0y0

2 1 2b0y0ẏ0 1 c0ẏ0
2 (10)

where

a0 5 Y1
2~t0, ts!~1 2 b2!

1 @Y1~t0, ts 1 T0! 2 Y1~t0, ts!b#2 (11)

b0 5 Y1~t0, ts!Y2~t0, ts!~1 2 b2!

1 @Y1~t0, ts 1 T0! 2 Y1~t0, ts!b#

3 @Y2~t0, ts 1 T0! 2 Y2~t0, ts!b# (12)

c0 5 Y2
2~t0, ts!~1 2 b2!

1 @Y2~t0, ts 1 T0! 2 Y2~t0, ts!b#2 (13)

The value of remainder

f 5 a0c0 2 b0
2 5 ~1 2 b2!@Y1~t0, ts!Y2~t0, ts 1 T0!

2 Y2~t0, ts!Y1~t0, ts 1 T0!]
2 (14)

is greater than zero. This means that for a fixedYm,
and for anyts, T0, andt0, Eq. (10) describes an ellipse
[for the stable solutions of Eq. (1)b2 , 1].

Now, using Eqs. (10), (2), and (5) we can rewrite
Eq. (10) in the form

Ym
2 5

F2~ts!

~1 2 b2!g0
2 @ y0

2F1~t0! 2 y0ẏ0F3~t0!

1 ẏ0
2F2~t0!# (15)

where

F1~ts! 5 a2ẏ2
2~ts! 2 b1ẏ1

2~ts!

1 ~a1 2 b2! ẏ1~ts! ẏ2~ts! (16)

F2~ts! 5 a2y2
2~ts! 2 b1y1

2~ts!

1 ~a1 2 b2! y1~ts! y2~ts! (17)

F3~ts! 5 2a2ẏ2~ts! y2~ts! 2 2b1ẏ1~ts! y1~ts!

1 ~a1 2 b2!@ ẏ2~ts!y1~ts! 1 ẏ1~ts!y2~ts!# (18)

It should be noted that functionsFi(ts) in brackets
within Eq. (15) depend only on the initial phaset0 of
ion movement, and do not depend onts.

It can be shown by a direct substitution that all
functionsFi(ts) are periodic functions of periodT0.

When for a fixed initial phaset0 in Eq. (15) we
change a moment of collating the characteristic solu-
tion with the general one, the value ofYm

2 also
changes. If from possible rootsti of the equation

dF2~ts!

dts
5 0 (19)

we choose one roott0m for which the value ofF2(t0m)
is maximal, and insert this value into Eq. (15) instead
of F2(ts), we obtain an expression for the maximal
oscillation amplitude of a stable particle whose tra-
jectory is described by Eq. (1). If we acceptYm

2 5 1
then from Eq. (15) we obtain the equation of an
acceptance ellipse in phase space. In general form the
equation of such an ellipse is written

~1 2 b2!g0
2

F2~t0m!
5 y0

2F1~t0! 2 y0ẏ0F3~t0! 1 ẏ0
2F2~t0!

(20)

This equation determines trapping conditions for
charged particles within quadrupole ion traps along
one coordinate depending on injection phase and
initial parameters (initial coordinatey0 and initial
velocity ẏ0). The trajectory amplitude search tech-
nique used here has also been successfully applied to
similar problems with the sinewave rf waveform [9].

3. Amplitude-phase characteristic

It can be shown that there are important equations
for Fi(ts):

dF1~ts!

dts
5 2c~ts!

dF2~ts!

dts
(21)

dF2~ts!

dts
5 F3~ts!

If t0i are the roots of the equationF3(t0i) 5 0,
then, as follows from Eq. (21),t0i are the extreme
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points forF1(ts) andF2(ts). In this case the functions
F1(t0) and F2(t0) have their extrema for the same
initial phases, andt0m is one of the rootst0i. For
F3(t0i) 5 0 the axes of the acceptance ellipse are
positioned along the coordinate axes of the phase
plane. Such orientation of the ellipse repeats itself
during T0 as many times as there are rootst0i during
the period.

Using the initial conditions of the first (y0 5 1,
ẏ0 5 0) and second (y0 5 0, ẏ0 5 1) kinds and Eq.
(15), we can obtain dependencies that are very impor-
tant for the trapping theory [amplitude-phase charac-
teristics (APC) of the first and second kinds].

APC of the first kind, as follows from Eq. (15), is
described by the following expression:

Ym~1st kind!
2 5

F2~t0m! F1~t0!

~1 2 b2!g0
2 (22)

For APC of the second kind we have

Ym~2nd kind!
2 5

F2~t0m! F2~t0!

~1 2 b2!g0
2 (23)

We can see from Eq. (21) thatYm(1st kind)
2 has

extreme points that satisfy the equations

c~t0n! 5 0

or/and (24)

F3~t0i! 5 0

As noted above,t0m is one of the rootst0i. It can
be shown by using Eqs. (15) and (21) that fort0 5

t0m, Ym(1st kind)
2 5 1.

The equations shown above are quite general. The
fundamental property of APC of the first kind can be
described as follows: For any shape of functionc(ts)
in Eq. (1), andẏ0 5 0, if equationF3(t0i) 5 0 has
one or more roots, then among them there is an initial
phaset0 5 t0m (called optimal phase of the first kind)
for which the amplitude of ion excursion remains less
than the initial coordinatey0.

Thus, the optimal phase of the first kind only

appears when functionF3(ts) has one or more zero
values during the period. IfF3(ts) Þ 0 during the
periodT0, then the APC of the first kind has extrema
for t0 5 t0n. It should be noted that, as follows from
Eq. (23), whenYm(1st kind)

2 is minimal for the optimal
phase of the first kind, the value ofYm(2nd kind)

2 is
maximal. The number of extrema of function
Ym(1st kind)

2 during period T0 varies throughout the
stability diagram. The number of extrema fort0 5 t0n

depends on the shape of functionc(ts). In the case of
a sinewave signal there are only two roots, and they
can be found from

a 2 2q cos 2t0n 5 0 (25)

where a and q are the parameters of the Mathieu
equation.

In the mode witha 5 0 these roots aret0n1 5

p/4 andt0n2 5 3p/4. In the case of a conventional
rectangular waveform, extreme points correspond to
signal wavefronts.

Because the functionF3(ts) may have no zero
points att0n, the APC of the second kind may have
fewer extreme values than the APC of the first kind.
Thus, the optimal phase of the second kind coincides
with the minimum of the APC of the second kind.

The acceptanceSacc, which in early publications on
quadrupole mass spectrometers theory was considered
a measure of sensitivity, can be easily derived from
Eq. (15):

Sacc5
1

@n i~t0m!#1/2 (26)

where n i(t0m) is the absolute value of the ratio
F2(t0m) to F1(t0m). The value ofSacc is independent
from the particle injection phase into the rf field.

4. Fi(t0) for traditional waveforms of the rf
potential

In order to define the values of the functionFi(t0)
we must know the forms of partial solutions to the
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initial Eq. (1). For instance, ifc(t) is a harmonic
signal, then this equation turns into the Mathieu
equation, whose partial solutions are well known
[14]:

y1~t! 5 O
2`

`

C2r cos~2r 1 b̃!t;

(27)

y2~t! 5 O
2`

`

C2r sin~2r 1 b̃!t

Then we have

a1 5 cos b̃p; a2 5 2sin b̃p;

b1 5 sin b̃p; b2 5 cos b̃p;

b 5 cos b̃p; sin b̃p 5 ~1 2 b2!1/2;

F1~t0! 5 2sin b̃p@ ẏ1
2~t0! 1 ẏ2

2~t0!#

F2~t0! 5 2sin b̃p@ y1
2~t0! 1 y2

2~t0!# (28)

F3~t0! 5 22 sin b̃p@ ẏ2~t0! y2~t0! 1 ẏ1~t0! y1~t0!#

5 22 sin b̃p O
2`

` O
2`

`

C2rC2m~2m 1 b̃!

3 sin 2~r 2 m!t0

The values oft0i can be found from the last
equation for theF3(t0): t0i1 5 0(p) andt0i2 5 p/ 2.
These values are the phases for extrema of the APC of
the first and second kinds.

For t0 5 t0i1 5 0(p)

F1~t0i1! 5 2~1 2 b2!1/2S O
2`

`

C2r~2r 1 b̃!D2

(29)

F2~t0i1! 5 2~1 2 b2!1/2S O
2`

`

C2rD2

(30)

For t0 5 t0i2 5 p/ 2

F1~t0i2! 5 2~1 2 b2!1/2

3 S O
2`

`

C2r~2r 1 b̃!~21!rD2

(31)

F2~t0i2! 5 2~1 2 b2!1/2S O
2`

`

C2r~21!rD2

(32)

Now we see that depending onC2r coefficients, the
optimal phase of the first kind corresponds either to
t0i1 or t0i2. If C2r coefficients do not change their
sign, then

t0m 5 0~p! (33)

If the C2r are the alternating quantities, then

t0m 5 p/ 2 (34)

It should be noted that the values oft0i are the roots
of equation

F3~t0i! 5 0 (35)

There could be other not so obvious roots. In that
case functionsF1(t0) and F2(t0) would have more
extreme points during the periodT0. Eq. (35) has two
roots if the working point is located near the apex of
the first stability zone (low values ofa and q), and
more roots if the working point is located within one
of the higher stability zones.

From Eqs. (27) and (26) we can obtain the follow-
ing expression for theC2r alternating series:

Sacc5 * O2`

`

C2r~2r 1 b̃!~21!r

O
2`

`

C2r~21!r * (36)

and for theC2r series of a fixed sign:

Sacc5 * O2`

`

C2r~2r 1 b̃!

O
2`

`

C2r
* (37)

Then we have

87E.P. Sheretov/International Journal of Mass Spectrometry 198 (2000) 83–96



n i~t0m! 5 1 O
2`

`

C2r~21!r

O
2`

`

C2r~2r 1 b̃!~21!r2
2

or (38)

5 3 O
2`

`

C2r

O
2`

`

C2r~2r 1 b̃!4
2

Above, we have shown an example of how the
obtained general expressions can be used in the case
when Eq. (1) has some particular independent solu-
tions. When it is difficult to find any particular
independent solutions, one can consider elements of
the transformation matrix for the general solutions of
Eq. (1) instead of transformation elements (a1, a2, b1,
b2) introduced above.

If we have

Uy~t0 1 T0!

ẏ~t0 1 T0!
U 5 Uc1~t0!c2~t0!

c3~t0!c4~t0!
U 3 Uy0

ẏ0

U (39)

then we can obtain the following relationship between
c i(t0) andFi(t0):

c1~t0! 5
1

g0
F1~t0!

c3~t0! 2 c2~t0! 5
1

g0
F3~t0! (40)

c4~t0! 5 2
1

g0
F2~t0!

The following expressions are valid forc i(t0):

2b 5 c2~t0! 1 c3~t0!

and (41)

c2~t0!c3~t0! 2 c1~t0!c4~t0! 5 1

The introduction of thec i(t0) functions proved to
be an especially effective method of calculating the
charged particle trapping conditions when a quadru-
pole mass spectrometer is driven by a pulse rf voltage
(Fig. 1). In this case it is practically impossible to find
any partial independent solutions of Eq. (1) due to
specific properties of a pulse signal (discontinuity of
functions), but it is very easy to define thec i(t0)
functions. It is convenient to uset90 instead oft0.

For a conventional pulse signal such as that shown
in Fig. 1 the equation forc i(t90) can be written in the
form

c1~t90!u 5 a15cosha2h2 sinh a1h1 1
1

2 Sa1

a2
1

a2

a1
D cosha1h1 sinh a2h2

1
1

2 Sa2

a1
2

a1

a2
D sinh a2h2 cosha1h12t90

6 (42)

Fig. 1. A conventional rf pulse signal.U1 andU2 are the amplitudes
of the focusing and defocusing pulses;t1 andt2 are the duration of
these pulses;t90 is a dimensionless quantity ranging from (20.5) to
(10.5) and measured from the middle of the pulse;T0 is a period
of a pulse signal.
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c2~t90!u 5 cosha2h2 cosha1h1

1
1

2 Sa1

a2
1

a2

a1
D sinh a2h2 sinh a1h1

1
1

2 Sa1

a2
2

a2

a1
D sinh a2h2 sinh a1h12t90 (43)

c3~t90!u 5 cosha2h2 cosha1h1

1
1

2 Sa1

a2
1

a2

a1
D sinh a2h2 sinh a1h1

1
1

2 Sa2

a1
2

a1

a2
D sinh a2h2 sinh a1h12t90 (44)

c4~t90!u 5
1

a1 5cosha2h2 sinh a1h1 1
1

2 Sa1

a2
1

a2

a1
D cosha1h1 sinh a2h2

1
1

2 Sa1

a2
2

a2

a1
D sinh a2h2 cosha1h12t90

6 (45)

wherea1 anda2 are coordinates of a working point on
the stability diagram

a1
2 5

2s

1 1 n0 1 p0

U1T0
2

za
2 ;

a2
2 5

2s

1 1 n0 1 p0

U2T0
2

za
2 ;

n0 5 Sxa

za
D2

; p0 5 Sxa

ya
D2

h1 5
t1
T0

; h2 5
t2
T0

wheres is the charge-to-mass ratio;xa, ya, andza are
the closest distances between the centre of the elec-
trode system and the ring and endcap electrodes along

theX, Y, andZ axes, respectively;U1, U2, t1, t2, and
T0 are defined in Fig. 1. The value oft90 is a
dimensionless quantity ranging from20.5 to 0.5 and
measured from the middle of the pulse.

Eqs. (42)–(45) determine the values ofc i(t90)u if t90
(initial phase) varies within one pulse [in Eqs. (42)–
(45) within the pulse with index 1, Fig. 1]. In order to
define the values ofc i(t90)u within the pulse with
index 2 (Fig. 1), one must swap indices 1 and 2 in the
right part of Eqs. (42)–(45). Indexu after c i(t90)u

shows that these functions represent the pulse signal.
From Eqs. (42)–(45) we see that phaset0m corre-

sponds tot90 5 0, i.e. the optimal phase of the first
kind corresponds to the middle of the pulses (the first
or second). Thus, thec4(t0m) should be selected from
two values defined from the following equations:

c41~t0m! 5
1

a1 5cosha2h2 sinh a1h1 1
1

2 Sa1

a2
1

a2

a1
D cosha1h1 sinh a2h2

1
1

2 Sa1

a2
2

a2

a1
D sinh a2h2

6 (46)

and
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c42~t0m! 5
1

a2 5cosha1h1 sinh a2h2 1
1

2 Sa2

a1
1

a1

a2
D cosha2h2 sinh a1h1

1
1

2 Sa2

a1
2

a1

a2
D sinh a1h1

6 (47)

We should select the maximal value. In Eqs. (46) and
(47) if a1 is an imaginary quantity, thena2 is a real
quantity by definition.

5. Size of the trapping area

As we have mentioned above, it was widely
perceived in earlier publications that the area of the
acceptance ellipse defines the sensitivity of an instru-
ment, and that sensitivity is proportional to the prod-
uct of areas of the ellipses for different coordinates.
This idea is mainly attractive because the sensitivity is
independent from the phase of ion injection into the rf
field, which is rather convenient. It also reflects the
ability of an instrument to “perceive” ions with high
initial coordinates and high initial velocities. How-
ever, no one could inject particles into the field in
such a manner that the phase space is uniformly filled
with ion working points. On the other hand, it follows
from experiments that there is a strong dependence
between sensitivity and ion injection phase (in some
cases this dependence can be attenuated, for example,
in the case of 100% transmission for the mass filter).

The current theory of QMS is based on stable
particle trapping space. In the ion trap, for example,
this is a region where nascent ions can be trapped by
the three-dimensional field. The ratio of the trapping
space volume to the injection volume of the analyzed
particles determines the trapping probability for in-
jected ions and, accordingly, the sensitivity of an
instrument. In order to estimate the trapping space
volume we should determine trapping areas along
coordinate axes. The size of the trapping area for a
given coordinate axis can be found from Eq. (10):

D i 5 2d i~t0!~1 2 ẏ0i
2 n i~t0m!d i~t0!!

1/2 (48)

where

d i~t0! 5
F1~t0m!

F1~t0!
(49)

and ẏ0i is the projection of the initial velocity on a
given axis.

We can see from Eq. (48) that thedi(t0) function
determines the dependency between the trapping area
and the initial phase. This function, by definition, has
the maximum value for the optimal phase of the first
kind. When a phaset0 is not equal to the optimal
phase of the first kind, the value of thed i(t0) function
decreases. Thedi(t0) function has one more (smallest)
extremum around the optimal phase of the second
kind (from 0.02 to 0.3 depending on rf signal shape
and working point location on the stability diagram).
The typical shape of thedi

2(t0) function is shown in
Fig. 2. The influence of initial velocities on the
trapping area is always negative (i.e.ẏ Þ 0 always
decreases the size of the trapping area and, respec-
tively, the trapping space volume), and depends on the
n i(t0m) coefficient [see Eq. (26) for the acceptance].
An increase inn i(t0m) increases the influence of ion
initial velocities and decreases the acceptance.

For initial velocity in Eq. (48) we have

ẏ0
2 5 j iDinit (50)

where Dinit 5 Uacc/Up2p; Uacc is the accelerating
potential difference that determines initial velocity of
a particle,Up2p is the rf peak-to-peak voltage applied
to electrodes, andji is a coefficient determined by a rf
voltage shape.

In the case of a sinewave signal:

j im 5 12q (51)

For a signal with a rectangular waveform:

j iu 5 3~a1
2 1 a2

2! (52)

The value of theDinit coefficient depends on how ions
are injected into the working volume of an analyzer.
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When ions are created in the ion trap by electron
impact ionization they then have low thermal initial
velocities. In this caseUacc ; wT 5 kT/e, wherewT

is the thermal potential,k is the Boltzmann constant,
ande is the electron charge. ForUp2p 5 2 3 103 V
the value of Dinit is about 1025. When ions are
injected into the quadrupole mass filter, they have
entrance energy of several electron Volts, and their
transverse velocities are close to the thermal ones (at
best). Under these circumstances we expect an in-
crease in theDinit value by a factor of 10 and more.
The values ofj in i(t0m) for the working point located
near the upper apex of the stability diagram are
presented in Table 1 for the axially symmetric ion trap
driven by a harmonic signal and a pulse signal of
different ratiosl (l 5 t1/t2, see Fig. 1).

A resolution of 190 was found for a given working

point on the stability diagram. Working point coordi-
nates are (for a sinewave signal)ar 5 0.334, qr 5
0.619; br 5 20.994, bz 5 0.985; [for a pulse
signal with pulse period-to-pulse duration ratio 2
(meander)]a1 5 3.588394,a2 5 2.506333;br 5
20.994,bz 5 0.984. We can seefrom Table 1 that
the ion trap operates in a high resolution mode, but
nevertheless the value ofẏ0i

2 ni(t0m)di(t0) in Eq. (48)
is very small. This means that the trapping effi-
ciency (the size of the trapping area) can be
described by

D i > 2d i~t0! (53)

If the ion trap operates in the mode without a dc
potential (for the Mathieu equationa 5 0), then the
value ofj in i(t0m) decreases. For a working point with

Fig. 2. Variation ofd i
2(t0) as a function of injection phaset0; t0m is the optimal phase of the first kind;t0i is the optimal phase of the second

kind.

Table 1
The values of thej in i(t0m) parameter for the axially symmetric ion trap

Harmonic
signal

Pulse signal

l

6/4 7/3 8/2 1/1 4/6 3/7 2/8
5.13 103 3.83 103 3.33 103 3.13 103 4.73 103 5.93 103 8.23 103 1.33 104
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ar 5 0, qr 5 0.25, b̃r 5 0.1790131, andb̃z 5
0.3737448 in thecase of a sinewave signal, we
obtain for ther coordinatejin i(t0m) 5 1.6 3 102.
In the case of a rectangular waveform (meander) for
a1 5 a2 5 1.915 we obtain j ini(t0m) 5 1.25 3
102.

Thus, we can use Eq. (48) for a precise estimation
of sensitivity for various operational modes of QMS.
However, for further consideration we shall use Eq.
(53) for estimation ofD i.

For example, let us consider the uniform ionization
within the whole working volume of the ion trap
during the whole periodT0. The trapping probability
in this case can be taken in proportion to the integral
P:

P 5
1

T0
E

0

T0

DxDyDz dt0 (54)

In practice, however, the restrictions imposed by
introduction of integral (54) are often violated. For
example, for the ion trap with an electron beam to
form ions, an ionization region is commensurable to
the trapping region only along one coordinate axis. If
the ionizing electron beam is injected along thez axis
with low r coordinates, there will be onlyDz (depend-
ing on the phase) under the integral. When the
ionizing electron beam is injected through the ring
electrode in the radial plane at a right angle to the
z axis (in the shape of a wide sheet beam), the
ionization region in thez direction is very small. In
this case sensitivity is in proportion to the follow-
ing integral:

P 5
1

T0
E

0

T0

Dx
2 dt0 (55)

BecauseDi is in proportion tod i(t0), the dependency
betweenDx

2 andt0 is very close to the dependency in
Fig. 2. The value ofdi

2(t0m) is 10–20 times greater
thand i

2(t0i) for the points located close to the upper
apex of the first stability zone. Thus, integral (55)
depends on thed i

2(t0) function for those values oft0
that are close to the optimal phase of the first kind,
and the range of integration in Eq. (55) can be limited

by the phase smaller thant0n. In this case, after
replacing thedi(t0) function with its Taylor approxi-
mation around the optimal phase of the first kind, Eq.
(55) can be rewritten in the form

P 5
2~t0n 2 t0m!

T0
S1 2 O

j51

` ~d i
2~t0!!

~ j!ut05t0m

j ! ~ j 1 1!

3 ~t0n 2 t0m! jD (56)

We see that the maximal sensitivity can be achieved
when

~di
2~t0!!

~i!ut05t0m
5 0 (57)

i.e. all derivatives ofd i
2(t0) in the pointt0 5 t0m must

be sufficiently small or equal to zero. Eq. (57) is a
very strong condition. The value of integral (56) can
be considerably increased if we can make several
first-order derivatives equal to zero. Note that condi-
tion (57) can only be fulfilled within some part of the
periodT0.

Let us find conditions under which Eq. (57) is
fulfilled. From Eqs. (21) and (48) we have

d i~t0! 5
F1~t0m!

F1~t0!
;

(58)
dF1~t0!

dt0
5 2c~t0! F3~t0!

By a successive differentiation of the function
1/F1(t0) we obtain higher derivatives that are ratios of
two functions. The denominator of these ratios in-
cludes the F1(t0) function of a positive degree.
BecauseF1(t0m) is not equal to zero, the functions in
the denominators are nonzero functions fort0 5 t0m.
The numerator of the higher derivatives includes a
sum of functions proportional toc(t0m), or higher
derivatives ofc(t0) for t0 5 t0m, or proportional to
these functions of a positive degree. Eq. (57) is
feasible if the following conditions are fulfilled:

c~t0m! 5 0

c~i!~t0!ut05t0m
5 0 (59)
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In addition to these conditions we should add
another condition that follows from Eqs. (2) and (26)
that

Sacc5
1

@n i~t0m!#1/2 (60)

should be maximal.
These are the requirements for the optimal signal

c(t) in Eq. (1). Meeting these requirements consider-
ably increases the sensitivity of the mass spectrome-
ter.

The first requirement in Eqs. (59), which is the
strongest one, is not met for rf signals used at the
present time. The second requirement in Eqs. (59) is
partially met for a conventional sinewave signal.
Here, if we consider the canonical Mathieu equation,
t0m 5 0(p), the first derivative and all odd deriva-
tives of c(t) for t0 5 t0m are equal to zero. At the
same time, in the case of a pulse signal the second
requirement in Eqs. (59) is completely met, whereas
the first one is not. From the point of view of the
developed theory, a pulse signal is more optimal than
a sinewave signal. An rf waveform that satisfies the
first condition in Eqs. (59) around the optimal phase
of the first kind is called the EC signal.

6. EC signal

A conventional harmonic signal with a dc compo-
nent can be turned into a harmonic EC signal by
superimposing an additional harmonic function. The
harmonic EC signal can be expressed in the following
form:

c~t! 5 a 2 2q@cos 2t 1 k cos 2jt # (61)

wherek should be defined in accordance with the first
requirement in Eqs. (59), andj is an integer greater
than 1. Havingj greater than3 is possible, but hardly
attractive from a practical point of view.

If we assumej 5 2, then Eq. (61) has three
extrema for

i0i
5 p9

p

2
; p9 5 0, 1, 2, . . . (62)

and two extrema for

2t0j
5 arccos(21)

1

4k
(63)

the optimal phase of the first kind for ther coordinate
(for axially symmetric ion trap) corresponds to the
focusing field along the radius, i.e. the right part in Eq.
(61) must be positive. In order to satisfy this condition
we should selectp9 5 1 in Eq. (62). If we assume

c~t01! 5 0 (64)

then we obtain the needed value ofk:

kp951 5 1 1
a

2q
(65)

From this equation we can see thatk . 1 and grows
with the increasing slope of the scan line. In the mode
of operation without a dc potentiala 5 0 andk 5 1.
This mode is very attractive and easy to implement,
and this is a simple version of the mass-selective
instability mode [15].

The harmonic EC signal (p9 5 1, j 5 2, anda 5

0) is shown in Fig. 3a. A phaset0m 5 p/ 2 in this
figure is the optimal phase of the first kind. The signal
described by Eq. (61) has all derivatives of odd orders
for the optimal phase of the first kind, andc(t0m) 5

0. Otherwise, Eq. (61) meets the requirements in Eqs.
(59) only in part, but importantly, the first strong
condition is fulfilled.

If in Eq. (61) we assumej 5 3, thenc(t) can be
written in the form

c~t! 5 a 2 2q@cos 2T 1 k cos 6T# (66)

Here we see that

t0i 5 p9p/ 2

and (67)

p9 5 0, 1, 2, . . .

i.e. extrema occupy the same phases.

sin2 2t0j 5
1 1 2k

12k
(68)
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and for k we have the same expression as Eq. (65).
The waveform of the harmonic EC signal is shown in
Fig. 3b.

Note that the harmonic EC signal that corresponds
to j 5 2 (Fig. 3a) is asymmetric. This means that this
signal is optimized along one coordinate axis (the
OPC of the first kind for ther coordinate). The signal
is not optimized along thez coordinate because the
optimal phase of the first kind corresponds to the
phase of 0(p), and the first condition of Eqs. (59) is
not fulfilled. The EC signal withj 5 3 is symmetric
(Fig. 3b) and this signal is optimized along both ther
and thez coordinates.

In order to meet all the requirements of Eqs. (59),
analyzers should be driven by a pulse signal. We have
suggested a pulse EC signal [16], the waveform of
which is shown in Fig. 4a. Time intervalsh i, which
make a periodT0 of the signal, could be set in various
proportions. The time intervalha is called the active
part of the EC signal. The active part of the signal
shown in Fig. 4a meets the requirements of Eqs. (59)
completely for a coordinate axis along which the time
intervalh1 is focusing (a force acting upon a charged
particle directed toward the origin). The duration of
the active part can be set up to a half of the periodT0.
Under certain circumstances (shown in Part II) this
dramatically increases trapping efficiency and sensi-
tivity of instruments.

A signal shown in Fig. 4 is similar to the harmonic
EC signal for j 5 2. A pulse EC signal having a
symmetric structure corresponding to a harmonic EC
signal withj 5 3 is shown in Fig. 4b. The pulseh1 is

focusing (h2 is defocusing) along one coordinate and
defocusing (h2 is focusing) along the other one. The
respective active parts for these pulses areha1 and
ha2. It should be noted that the EC signals are easy to
generate, especially for the ion trap and monopole
mass filter.

In Table 2 we compare the calculated values of
j ini(t0m) for a three-dimensional axially symmetric
ion trap driven by EC signals. Calculations were
carried out for a working point located close to the
upper apex of the first stability zone (r coordinate).
For the pulse EC signal (h i 5 0.25T0) coordinates
are a1 5 4.40267,a2 5 4.276; coordinates in the
case of the harmonic EC signal (j 5 2) are a 5

0.471747,q 5 0.494773.
The use of the EC signal, as shown in Tables 1 and

2, yields an increase of trapping efficiency for charged
particles with nonzero velocities. However, the total
increase in sensitivity for QMS can be estimated
comparing the integrals of Eq. (55) for driving signals
of different waveforms, or by comparison of correctly
calculated mass peak shapes, which is more prefera-
ble. These issues are addressed in Part II.

Fig. 3. Harmonic EC signal (one period). (a) Harmonic EC signal with the second harmonic (p9 5 1, a 5 0, j 5 2). Line 1 is the first
harmonic, 2 is the second harmonic, and 3 is the harmonic EC signal. (b) Harmonic EC signal with the third harmonic (p9 5 1, a 5 0, j 5
3). Line 1 is the first harmonic, 2 is the third harmonic, and 3 is the harmonic EC signal.

Table 2
The values of thej in i(t0m) parameter for the axially symmetric
ion trap driven by EC signals

Pulse EC signal
Harmonic EC signal
(j 5 2)

1.13 103 2.323 103
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7. Conclusions

This article has (1) demonstrated a general
calculation principle for amplitude of ion oscilla-
tion within the QMS for an arbitrary periodic
waveform; (2) obtained a general expression for the
acceptance ellipses and amplitude-phase character-
istics of the first and second kinds; (3) obtained a

general expression determining the size of the
trapping space within the analyzer; (4) formulated
and validated requirements for the optimized rf
signal applied to electrodes of QMS; (5) suggested
the EC signal that completely meets the stated
requirements.

Waveforms of both the pulse and harmonic EC
signals and their properties have been described.

Fig. 4. Pulse EC signal (one period). (a) Asymmetric pulse EC signal (ha is the active part of the EC signal for ther coordinate); (b) symmetric
pulse EC signal (ha1 andha2 are the active parts of the EC signal for ther andz coordinates, respectively);U1 andU2 are the amplitudes
of the focusing and defocusing pulses;h1 is the relative duration of the focusing pulse andh2 is the relative duration of the defocusing pulse.
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